IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-35, NO. 2, FEBRUARY 1987 . 205

Short Papers

Finite-Element Analysis of Overmoded Waveguide
Using Silvester’s Algorithm

ROBIN W. CRAVEY, ROBERT STERNLICHT, anD
CHARLES E. RYAN, JR., SENIOR MEMBER, IEEE

Abstract — A general, high-order finite-element waveguide analysis pro-
gram originated by Silvester [1], [2] has been used to analyze overmoded
waveguides. The algorithm approximates arbitrarily shaped waveguides by
triangular subsections and solves the Helmholtz equation subject to homo-
geneous Dirichlet or Neumann boundary conditions to obtain the eigenval-
ues (cutoff wavelengths) and the eigénvectors (scalar potentials). During
these investigations of arbitrarily shaped overmoded waveguides, a com-
puter program error was identified. This error resulted in incorrect higher-
order-mode potential functions. As this algorithm has been rather widely
disseminated, it is the purpose of this communication to inform users of a
correction which yields the correct higher-order-mode potential functions.

I. INTRODUCTION

The Silvester algorithm was obtained from Montgomery [3]
and installed on the CYBER computer system at the Georgia
Institute of Technology. Our purpose for the algorithm was to
examine overmoded waveguides with arbitrary cross sections. In
order to check the algorithm execution, rectangular and circular
waveguides were used as test cases. During the numerical testing,
it was observed that the lowest-order-mode potential was always
computed correctly, as shown in Fig. 1. However, discontinuities
in the potential were observed for the higher order modes, as
shown in Fig. 2. These “spike” discontinuities preclude the
computation of the higher-order-mode ficlds by differentiation of
the TE- and TM-mode potential functions. Note that this differ-
entiation can be performed numerically or that the polynomial
basis functions can be differentiated directly to obtain an expres-
sion for the potential in terms of the polynomial coefficients. In
our analys1s the direct differentiation was employed.

After“an exhaustive investigation into the algorithm code, it
was determined that a program error caused the incorrect results
for the higher’-order-mode potentials. Briefly, the method used by
Silvester is to. tridiagonalize the finite-element matrix for the
eigenvalue problem given as ‘

Ax =k%x. )

As stated by Silvester, “this equation is solved by a Householder
tridiagonalization. The eigenvalues are located by bisection, using
Sturm sequences and the eigenvectors are computed by Wielandt
iteration” [1]. After the tridiagonal matrix is solved, the eigenvec-
tors of the original problem are constructed by multiplying the
tridiagonal matrix by appropriate “rotation matrices,” which are
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Fig. 1. Potential function for the first TE mode in a 3X2 rectangular
waveguide using 18 triangular subsections and fourth-order polynomials.
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Fig. 2. Potential function for the second TE mode in a 3X2 rectangular
waveguide using 18 triangular subsections and fourth-order polynomials.
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Fig. 3. Rectangular waveguide potential for the second TE mede.

*“remembered” during the tridiagonalization process. Unfor-
tunately, during the first pass through this procedure, one of

. these matrices is overwritten which causes the subsequent G.e.,

higher order) mode potential functions to be erroneous.

The original and corrected lines of code are given in Table 1.
When the correction is implemented, the higher order mode
potentlals are calculated correctly, as shown in Figs. 3 and 4 for
the cases of rectangular and cireular waveguide, respectively. The
code can also be used to compute the potential functions for
other guide shapes, as illustrated in Figs. 5 and 6, which present
results for triangular and trapezoidal waveguides.. C
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TABLE 1
ORIGINAL AND MODIFIED CODE FOR SILVESTER’S PROGRAM
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The array TST(J) in the modified code must be dimensioned the
same as the array T(J) in the original code.
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Fig. 4. Circular waveguide potential for the fifth TE mode.
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Fig. 5. Triangular waveguide potential for the third TE mode.
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Fig. 6. Trapezoidal Wavegulde potential for the third TM mode.

II. Concrusions

The “General High-Order Finite-Element Waveguide Analysis
Program” originated by Silvester [1], {2] has been used to com-
pute the potential functions for the higher order modes in arbi-
trarily shaped waveguides. Upon correction of a program error,

"the code was found to be accurate and efficient. In addition,
Sitvester’s assertion [1] that it is “desirable to use as few triangu-
lar subregions as the boundary shape will permit, with as high a
degree of polynomial representation as feasible” was substanti-
ated.
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Dyadic Green’s Functions for Integrated Electronic
and Optical Circuits

JONATHAN S. BAGBY, MEMBER, IEEE, AND
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Abstract —Layered structures play an important role in both integrated
microwave circuits and optical integrated circuits. Accurate prediction of
device behavior requires evaluation of fields in the system. An increasingly
used mathematical formulation relies on integral equations: the electric
field in the device is expressed in terms of the device current integrated
into an electric Green’s function. Details of the development of the
specialized Green’s functions used by various researchers have not ap-
peared in the literature. We present the development of general dyadic
electric Green’s functions for layered structures; this dyadic formulation
allows extension of previous analyses to cases where currents are arbi-
trarily directed. The electric-field Green’s dyads are found in terms of
associated Hertzian potential Green’s dyads, developed via Sommerfeld’s
classic method. Incidently, boundary conditions for electric Hertzian
potential are utilized; these boundary conditions, which have been a source
of confusion in the research community, are developed in full generality.
The dyadic forms derived herein are reducible in special cases to the
Green’s functions used by other workers.

I. INTRODUCTION

Layered dielectric structures, such as those depicted in Fig, 1,
play an important role in both integrated electronic circuits and
integrated optical circuits. In integrated electronics, conducting
“devices” are affixed to a dielectric film layer which is deposited
over a conducting ground plane. For integrated optical circuits, a
diclectric waveguiding region is typically placed on top of a
dielectric film layer; the film layer is, in turn, deposited on a
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